Plasma Cutter

plasma cutter

In physics and chemistry, plasma is a state of matter similar to gas in which a certain portion of the particles are ionized. Heating a gas may ionize its molecules or atoms (reduce or increase the number of electrons in them), thus turning it into a plasma, which contains charged particles: positive ions and negative electrons or ions.

Plasmas are by far the most common phase of matter in the universe, both by mass and by volume. All the stars are made of plasma, and even the space between the stars is filled with a plasma, albeit a very sparse one. In our solar system, the planet Jupiter accounts for most of the non-plasma, only about 0.1% of the mass and 10−15% of the volume within the orbit of Pluto. Very small grains within a gaseous plasma will also pick up a net negative charge, so that they in turn may act like a very heavy negative ion component of the plasma.

Plasma cutting is a process that is used to cut steel and other metals of different thicknesses (or sometimes other materials) using a plasma torch. In this process, an inert gas (in some units, compressed air) is blown at high speed out of a nozzle; at the same time an electrical arc is formed through that gas from the nozzle to the surface being cut, turning some of that gas to plasma. The plasma is sufficiently hot to melt the metal being cut and moves sufficiently fast to blow molten metal away from the cut.

I have a Miller Plasma Cutter Spectrum 701
so throughout this page I'll use
references to it from time to time.

Consumables kit

freehand cut of a thick steel plate
Freehand cut of a thick steel plate
The HF Contact type uses a high-frequency, high-voltage spark to ionise the air through the torch head and initiate an arc. These require the torch to be in contact with the job material when starting, and so are not suitable for applications involving CNC cutting.

The Pilot Arc type uses a two cycle approach to producing plasma, avoiding the need for initial contact. First, a high-voltage, low current circuit is used to initialize a very small high-intensity spark within the torch body, thereby generating a small pocket of plasma gas. This is referred to as the pilot arc. The pilot arc has a return electrical path built into the torch head. The pilot arc will maintain itself until it is brought into proximity of the workpiece where it ignites the main plasma cutting arc. Plasma arcs are extremely hot and are in the range of 25,000 °C (45,000 °F).[1]

Plasma is an effective means of cutting thin and thick materials alike. Hand-held torches can usually cut up to 2 in (48 mm) thick steel plate, and stronger computer-controlled torches can cut steel up to 6 inches (150 mm) thick. Since plasma cutters produce a very hot and very localized "cone" to cut with, they are extremely useful for cutting sheet metal in curved or angled shapes.


Proper eye protection such as welding goggles and face shields are needed to prevent eye damage called Arc eye as well as damage from debris.

Starting methods

Plasma cutters use a number of methods to start the arc. In some units, the arc is created by putting the torch in contact with the work piece. Some cutters use a high voltage, high frequency circuit to start the arc. This method has a number of disadvantages, including risk of electrocution, difficulty of repair, spark gap maintenance, and the large amount of radio frequency emissions.[2] Plasma cutters working near sensitive electronics, such as CNC hardware or computers, start the pilot arc by other means. The nozzle and electrode are in contact. The nozzle is the cathode, and the electrode is the anode. When the plasma gas begins to flow, the nozzle is blown forward. A third, less common method is capacitive discharge into the primary circuit via a silicon controlled rectifier.

Inverter plasma cutters

Analog plasma cutters, typically requiring more than 2 kilowatts, use a heavy mains-frequency transformer. Inverter plasma cutters rectify the mains supply to DC, which is fed into a high-frequency transistor inverter between 10 kHz to about 200 kHz. Higher switching frequencies give greater effiencies in the transformer, allowing its size and weight to be reduced.

The transistors used were initially MOSFETs, but are now increasingly using IGBTs. With paralleled MOSFETs, if one of the transistors activates prematurely it can lead to a cascading failure of one quarter of the inverter. A later invention, IGBTs, are not as subject to this failure mode. IGBTs can be generally found in high current machines where it is not possible to parallel sufficient MOSFET transistors.

The switch mode topology is referred to as a dual transistor off-line forward converter. Although lighter and more powerful, some inverter plasma cutters, especially those without power factor correction, cannot be run from a generator (that means manufacturer of the inverter unit forbids doing so; it is only valid for small, light portable generators). However newer models have internal circuitry that allow units without power factor correction to run on light power generators.

Plasma gouging

Plasma gouging is a related process, typically performed on the same equipment as plasma cutting. Instead of cutting the material, plasma gouging uses a different torch configuration (torch nozzles and gas diffusers are usually different), and a longer torch-to-workpiece distance, to blow away metal. Plasma gouging can be used in a variety of applications, including removing a weld for rework. The additional sparks generated by the process requires the operator to wear a leather shield protecting their hand and forearm. Torch leads also can be protected by a leather sheath or heavy insulation.

CNC cutting methods

plasma cutting with a CNC machine
Plasma cutting with a CNC machine
plasma cutting with a tilt head
Plasma cutting with a tilting head
Plasma cutters have also been used in CNC (computer numerically controlled) machinery. Manufacturers build CNC cutting tables, some with the cutter built in to the table. The idea behind CNC tables is to allow a computer to control the torch head making clean sharp cuts. Modern CNC plasma equipment is capable of multi-axis cutting of thick material, allowing opportunities for complex welding seams on CNC welding equipment that is not possible otherwise. For thinner material cutting, plasma cutting is being progressively replaced by laser cutting, due mainly to the laser cutter's superior hole-cutting abilities.

A specialized use of CNC Plasma Cutters has been in the HVAC industry. Software will process information on ductwork and create flat patterns to be cut on the cutting table by the plasma torch. This technology has enormously increased productivity within the industry since its introduction in the early 1980s.

In recent years there has been even more development in the area of CNC Plasma Cutting Machinery. Traditionally the machines' cutting tables were horizontal but now due to further research and development Vertical CNC Plasma Cutting Machines are available. This advancement provides a machine with a small footprint, increased flexibility, optimum safety, faster operation.

In the past decade plasma torch manufacturers have engineered new models with a smaller nozzle and a thinner plasma arc. This allows near-laser precision on plasma cut edges. Several manufacturers have combined precision CNC control with these torches to allow fabricators to produce parts that require little or no finishing.


Plasma torches were once quite expensive. For this reason they were usually only found in professional welding shops and very well-stocked private garages and shops. However, modern plasma torches are becoming cheaper, and now are within the price range of many hobbyists. Older units may be very heavy, but still portable, while some newer ones with inverter technology weigh only a little, yet equal or exceed the capacities of older ones.

    Gee Mom, look what else I've found!

"One thing to remember is to talk to the animals. If you do, they will talk back to you. But if you don't talk to the animals, they won't talk back to you, then you won't understand, and when you don't understand you will fear, and when you fear you will destroy the animals, and if you destroy the animals, you will destroy yourself." -- Chief Dan George

Hit counter